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NONSTATIONARY INTERACTION MODE IN A FLUCTUATING BOUNDARY LAYER 

S. N. Timoshin UDC 532.526 

The limit properties of the Cauchy problem for a partial integrodifferential equation 
describing the nonstationary interaction in a fluctuating boundary layer are examined for 
large Reynolds numbers Re [I]. It is shown that if the minimal value of the surface fric- 
tion stress per period in front of the interaction domain is negative and greater in order 

of magnitude than Re -I/8, then a range of wave numbers are extracted in the perturbed solu- 
tion spectrum for which excitation of appropriate harmonics occurs in a bounded time in- 
terval. The physical mechanism of the excitation is discussed as an appearance of an in- 
stantaneous flow instability. A classification is presented of the limit flow modes in 
the case when the minimum of the unperturbed friction is positive and: much greater than 
Re-i/8 

I. INTRODUCTION 

The flow with interaction in a fluctuating boundary layer is studied in [i] in an in- 
compressible fluid around a flat plate with a small local surface deformation. An asymp- 
totic theory of the flow for large Re was constructed under the assumption that the stream 
outside the boundary layer does not change direction during the whole time period while 
the minimum of the unperturbed friction stress on the plate in front of the domain of in- 
teraction is a quantity equal to 0(Re -I/8) in order of magnitude. It turns out that an 
investigation of three characteristic interaction modes is required to a lesser degree, 
in order to construct a solution uniformly suitable in time. Most interesting is the non- 
stationary interaction realized in a time interval of duration 0(Re -I/16) when the unper- 
turbed friction on the plate is almost a minimum. The flow in this interval is described 
by the Cauchy problem formulated in [i] for the nonlinear partial integrodifferential equa- 
tion 

x 
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i f O2B (s, T) ds d~ 
+ / (~))] ~o 2~/~ o~ ~ ( ~ - ~  ( x -  ~)~/~' ( 1 . 1 )  

B(X, --oo) = --](X), B(--oo, T) =/(--oo) = O. 

Here T is the reduced time, X is the longitudinal coordinate, ~ and ~0 are fixed positive 
constants, H 0 is the effective amplitude of plate deformation and the function f(X) governs 
the deformation mode. The desired function B(X, T) is simultaneously the perturbation of 
the longitudinal velocity component and the surface friction stress as well as the thick- 
ness, taken with opposite sign, of the near-wall viscous layer displacement thickness. 
The combination T 2 + a yields the unperturbed friction stress on a plate whose minimum is 
proportional to o and is achieved at the time T = 0. 

The correctness of the formulation of the problem (i.i) was studied in a linear ap- 
proximation H 0 = 0 [I]. It turns out that the solution exists, depends continuously on 
the deformation mode and as T § +~ approaches the quasistationary limit B(X, +~) = -f(X) 
asymptotically. The solution is stable relative to perturbations produced at an arbitrary 
time if the induced perturbation has a bounded spectrum. However, in the case of pertur- 
bations with an unbounded spectrum the problem on stability turns out to be incorrectly 
formulated in the general case, which is related to the explosive growth of the amplitude 
of the shortwave modes in the initial stage of evolution of the solution. 

2. EXCITATION IN A BOUNDARY LAYER WITH STRONG COUNTERFLOWS 

Let us examine the case of infinitesimal deformation to which a linearized form of 
the problem (i.I) (H 0 = 0) corresponds. The initial equation is simplified by using the 
Fourier transform 

OB* 
or + [?,, (~~ (T~ + o) + ?~ (i,o?g~ I o)I ] S* = 

= - -  % (io)) '~14 (T 2 + (r)/* (o)), 71 = 2-514~112, 

B* (o), T) = ~ exp (-- io)X) B (X, T) dX, [ arg (i(o) ] < n. 

( 2 . 1 )  

The solution of this equation that satisfies the initial condition B*(m, -~) = -f*(m) has 
the form 

i T -- ?a (i~)s/4'~l ~J exp(~t~ (i~)s 4 (sa Ts) + B* i* ((0) 1 

-~ (2.2) 

+ [%z(i~)~/4 + ?i(i~)a,al~l](s_T)}ds]. 

The Fourier transform was inverted numerically for the deformation f = exp(-X2). The 
dependence B(X, T) is shown in Fig. i for a = --2 at the times T = -2, 0, 6 (curves 1-3). 
If the solution is close to the limit B(X, • = -f(X) for T = -2 and 6, then at T = 0 it 
has the nature of large amplitude vibrations where the longitudinal scale of the perturbed 
flow domain turns out to be much larger than the length of the deformed section of the 
surface. Such a unique boundary layer excitation is associated with the presence of coun- 
terflows in the unperturbed flow as is confirmed by the behavior of the function B(X, T) 
at the time T = 0 for o = 2 (dashed line in Fig. i). 

An exhaustive description of the effect of perturbation of the local solution is ob- 
tained successfully in the case of an unperturbed flow with strong counterflows to which 
the limit form of (2.2) corresponds for a § Taking into account that the perimeter 

varies in an unlimited interval, it is expedient to seek the characteristic limits of 
the solution when obtaining testimates of the integral (2.2). The first occurs when all 
the components in the exponent of the exponential in (2.2) is of identical order of magni- 
tude, i.e., for �9 = Te I/4 ~ i, ~ = ~e I/3 ~ i, e = (--0) -2 ~ 0. Going over to new variables, 
we find 
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g (s, .~) = ) (~t;)~/,, .~ _ [~o (~)~/ '  - "~', ( W "  l~ 1] ~. 
(2.3) 

The solution is represented in a form convenient for estimation of the function @ by 
using the saddle-point method for (~, ~) ~ i, s § 0. Omitting the details of the analysis, 
we indicate the final result by limiting ourselves (without loss of generality) to the 

range of values ~ > 0. 

It turns out that a closed curve F, symmetric relative to the axis ~ = 0 exists in 
the plane (T, ~) (the upper half of the curve is shown in Fig. 2). If the point (T, ~) 
is in the outer domain relative to r, then the solution has a quasistationary asymptotic 
that can be obtained from (2.1) by neglecting the time derivative 

~(~, ~; ~) = [?o(~)~/'( ~ = -  t )  §  z ~ ) ~ / ' I r  "'" ( 2 . 4 )  

The asymptotic representation of the solution is more complex in the domain of para- 
meters enclosed within F 

~/~ . -~/8 ~)] + 

�9 o " t - ~o ( i 0 ' / 2 1  ~1 , %, < o, ~ (-~, ~) = (i~) 314 (-~ - %)2 (.~ + 2%). (2.5) 

Here T0r is the real part of t 0. The level lines ~r = -3 and -6 (curves 1 and 2) are shown 
in Fig. 2. On the curve r itself ~r = 0. The vertex of F has the ordinate E0 = 3.8226; 

is the wave number of a definite harmonic in the spectrum of perturbations caused by the 
plate deformation. The evolution of harmonics with wave numbers E > E0 in time is described 
by the quasistationary approximation (2.4) in the whole range of variation of ~. If 0 < 

< ~0 then in a definite time interval (Fig. 2), the smooth quasistationary change in the 
perturbation is transformed into high-frequency oscillations with exponentially large ampli- 

17z tude (2.5). By virtue of the equality ~ = ~E the excitation effect is present for har- 
monics with the wave numbers Iml < ~0 ~-I/3, E << i. 

Additional analysis shows that excitation is observed only for Iml >> 8. In fact, let 
= Ep, e § 0, (p, ~) = O(i). We write the representation of the solution in this limit 

case as 

l~*=--.f*(~o) i - - s ~ ? , ( i F ) 5 / a l F ]  , e x p [ G  t ( s , ~ ,  F ) l d s ,  

G ,  = ? o ( i F ) 3 / ~ [ t / 3 ( s  ~ - . ~ 3 ) _ ( s  _ ~)1 .  
(2.6) 

It can be shown that if p + +~, then the solution (2.6) goes continuously over into 
(2.3)-(2.5) as ~ § 0. It is easy also to establish that all possible modes of the solu- 
tion (2.2) as o +-~ are exhausted by the two mentioned characteristic limits. 
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There now remains to perform the inverse Fourier transform. 
ple of such calculations for deformation with a bounded spectrum 

](X) = sin ((ooX)/(a)oX), (oo = const,  

l*=~/~o ( [ ~ 1 < ~ o ) , I * = 0  ( 1 ~ 1 > ~ o ) -  

Let us present an exam- 

As e § 0.the expression for the function B in the time interval -i < �9 < 2 has the form 

\?o/ V o (x + t) ~ ( 2 - -  ,)  (i~o)3/4 + 4 ~  o + c. c. + . . . .  

@ = a-3/4[i~0~ + ~ (~  + l f i ( 2 - - T )  (i%)a/4]. 

Here ~ = XE 3[4 = 0 ( 1 ) ,  t h e  n o t a t i o n  c . c .  d e n o t e s  t h e  complex c o n j u g a t e  e x p r e s s i o n .  T h e r e -  
f o r e ,  t h e  p e r t u r b a t i o n  a round  t h e  s e l e c t e d  o b s t a c l e  has  t h e  form o f  a m o d u l a t e d  wave w i t h  
t h e  c h a r a c t e r i s t i c  l o n g i t u d i n a l  d i m e n s i o n  X = O(e - 3 / 4 )  and wave l e n g t h  X = O(1) in  t h e  ex-  
c i t e d  s t a t e .  The l o n g i t u d i n a l  s c a l e  o f  t h e  p e r t u r b a t i o n  h e r e  t u r n s  ou t  t o  be much g r e a t e r  
t h a n  t h e  l e n g t h  o f  t h e  d e f o r m a t i o n .  The m e n t i o n e d  p r o p e r t i e s  o f  t h e  s o l u t i o n  were  demon- 
s t r a t e d  e a r l i e r  in  F i g .  1. Le t  us a l s o  n o t e  t h e  nonsymmet ry  o f  t h e  s o l u t i o n  w i t h  r e s p e c t  
t o  t ime  t h a t  i s  a s s o c i a t e d  w i t h  t h e  i n e r t i a l  p r o p e r t i e s  o f  t h e  p e r t u r b a t i o n s .  

We examine  t h e  p h y s i c a l  mechanism o f  b o u n d a r y  l a y e r  e x c i t a t i o n  in  g r e a t e r  d e t a i l .  We 
f i r s t  c o n s i d e r  t h e  e v e n t s  o c c u r r i n g  f o r  min ima l  v a l u e s  o f  t h e  wave numbers  f rom t h e  e x c i -  
t a t i o n  r a n g e .  We s e t  ~ = r and p e r f o r m  a r e p e a t e d  p a s s a g e  t o  t h e  l i m i t  in  ( 2 . 1 ) :  f i r s t  
E ~ 0, ~ ~ i ,  t h e n  ~ + ~. We assume h e r e  t h a t  t h e  q u a s i s t a t i o n a r y  S o l u t i o n  i s  v a l i d  a t  
any t i m e  x. C o n s e q u e n t l y  

z ~ Z t  + " ' "  + ~  ( 2 . 7 )  

Let us recall that the coefficient ~i in (2.1) is in front of the component charac- 
terizing the boundary layer interaction with the external flow [i]. Then the first term 
in (2.7) corresponds to the fact that the boundary layer flows around an obstacle by out- 
lining its shape exactly. The shift of the streamline caused by such a flow results in 
generation of additional pressure in the external stream. The second term of the expan- 
sion (2.7) is due to boundary layer reaction to the pressure perturbation. 

The solution (2.7) has a singularity for Ixl = i. It can be assumed that the singu- 
larities are eliminated in small neighborhoods of the points mentioned under the effect 
of nonstationarity and, possibly, interaction. As x = -i is approached from different 
sides, the second term in (2.7) tends to infinites of different signs. If, for example, 
the stream is accelerated as �9 § -i - 0, then during a short time interval near �9 = -i 
the fluid should be retarded and, moreover, acquire a significant negative velocity (only 
in this case would the condition of joining with the solution as �9 § -i + 0 be satisfied 
successfully). Let us show that this does not occur. Let us examine the neighborhood 
of the time x = --i and from considerations of generality let us select the value of ~ such 
that the nonstationarity and the interaction would influence the motion simultaneously. 
Then setting �9 = -i + g2/s~ l, V = r I in (2.1), we obtain in the principal approxi- 

mation 

OB* ] 
V~ --  [270 ( i~) ~/4 ~ - -  7~ (i~)5/41 ~ I B* = 2~o (i~x) ~/~ ~aJ*. ( 2 . 8 )  

The solution of this equation that satisfies the condition of joining the solution (2.7) 
as T l +-~ grows exponentially if T I + +~. This indeed denotes the beginning of boundary 
layer excitation. Therefore, after the short-range action of nonstationarity the stream 
goes over into the excited state instead of again acquiring a quasistationary form. It 
is conceivable that this is possible if and only if the unperturbed flow becomes unstable 
for �9 > -i. Flow stability is characterized by the solution of the homogeneous equation 
(2.1) which can be written in the form 
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B* = exP(--~(ie) ~/4 T 3- [% (g~)314c + ?i(~)5/4'~I] T] (2.9) 

If the wave number satisfies the condition ~ = ED, D ~ i, then instantaneous instability 
of the solution can be considered. Let us still consider ~ ~ e -I/s and let us introduce 
the fastvaniable ~ = Ds/4y. In the neighborhood of any time �9 the solution (2.9), to the 
accuracy of a factor dependent on just �9 but not on T2, is represented in the 
form B* = exp[Y0i3/4(l - T2)~2 + O(D-a/4~22)]. It hence follows directly that in 
the interval I~[ < 1 the flow is unstable relative to harmonics with the wave numbers g 

Equation (2.8) describes flow with interaction. If ~I + 0 then interaction attenuates 
but the exponential growth of the solution is conserved. Magnification of the interaction 
(DI + +~) also does not eliminate excitation, however, the beginning of attenuation is 
delayed here. This effect is seen especially well in the shortwave modes ~ = e-i/s~, ~ ~ 
i. The dashed lines in Fig. 2 superpose the boundaries of the instantaneous instability 
domain. They are obtained by using the procedure elucidated above applied in the range 
of the wave numbers ~ ~ i. It turns out that the flow is unstable if I~I > IY0/Yl( T2 - 
i)] 2/s It is interesting that interaction plays a dual role: on one hand expands the 
instability domain (and increases the instantaneous increments of perturbation growth) 
and on the other, shifts the time of the beginning of excitation. The shape of the curve 
F in Fig. 2 is indeed determined by the opposition of these two factors. 

Let us examine the question for a given class of flows in principle. Let us assume 
that the deformation mode has a spectrum located in the domain ~ ~ i and cut off from zero 
(f* = 0 if [~[ < 6 and 6 is a finite number). Then starting from (2.1) we construct the 
solution in the form of a formal asymptotic series in powers of e, whose first term is 

B* = - -  % (~)~/~ (~  --  ~) i* (~-~/~0 [l + 0 @)]. ( 2 . 1 0 )  
Vo(i~)~t4(~ ~ -  t ) +  ?1(~)~t41~1 

It can be seen that such a quasistationary solution is uniformly suitable in an infinite 
interval of variation of m and satisfies the conditions for junction with the external 
solution for I~I ~ I. Therefore, the approximation (2.10) satisfies the principle of 
self-consistency which is considered as the criterion for correctness of the solution of 
the problem in the method of joined asymptotic expansions. Meanwhile passage to the limit 
in the exact solution shows that (2.10) is not suitable in a certain bounded interval of 
variation of ~. In this case the Stokes phenomenon known in the asymptotic theory of dif- 
ferential equations is observed. Indeed, if the time �9 is considered a complex variable, 
then the approximation (2.10) will have two poles displaced from the real axis, whose in- 
fluence (more accurately, of one of them) also results in a loss of suitability of the 
quasistationary solution. 

3. NONLINEAR INTERACTION MODES IN A FLOW WITHOUT COUNTERCURRENTS 

Next we examine the limit forms of the problem (i.i) as o § +~. We assume that the 
deformation has the characteristic longitudinal dimension S such that f(X) = F~X/S) and 
we execute a change of variable X = SX0, B(X, T) = -F(X0) + C(X0, T), 72 = ~ -0 , -s = 
~-iy-12-z/2. We write the problem (i.i) in the form 

HoC ~ -k (T ~ -k o) C ---- S-3t2J~(C, Xo, T) --SaI~J2(CI Xo, T) Jr- S:21aG(Xo), 
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C(Xol  - - o o )  ---- C ( - - oo ,  T) = O, 
oo 

J1 (e l  X o, T) '~2 c92C (s, T )  ds 
Xo as 2 (s - Xo)1/2~ 

X o 

Y2 (C, X o, T) = 73 y oc (8, 1') d~ 
-oo OT (X o _ s) l / #  

i dZF (s) d8 
C (Xo) = - -  ~ d~  ( s - -  Xo)~/2. 

X o 

(3.1) 

Passing to the limit o + +~ we select the deformation amplitude H 0 so as to conserve 
the nonlinear nature of the perturbed flow. The problem (3.1) has two characteristic limits 
corresponding to the separate influence of the nonstationary and interaction effects. In 
the first case S ~ 02 , T ~ o I/2, H 0 ~ o 5, C ~ o -~ (ray i in Fig. 3). In the limit the 
integral J1 characterizing the interaction effect drops out of (3.1), i.e., this flow mode 
is a particular case of nonstationary fluid motion in a boundary layer with a given pressure 

distribution. 

The second characteristic limit of the problem is nonlinear quasistationary flow with 
interaction and is realized for S ~ 0 -2/3 , T ~ 0 I/2 , H 0 ~ o, C ~ 1 (ray 2 in Fig. 3). The 
integral J2 in (3.1) is here small as compared with the remaining components. The flow 
modes corresponding to other relationships between the quantities S and o, o >> 1 (sectors 
I-III) can be considered as particular cases of the two above-mentioned characteristic 

limits. 

Let us examine the singularities of the flow mode in sector III included between rays 
1 and 2 in greater detail. Both integrals J1 and J2 in (3.1) are here negligibly small 
and the solution is represented in the form 

T = C / 2 T , ,  tIo = (1~,-~3/~H5, C . ~  ( ~ - 1 S - 3 / 2 C 5 ( X 0 ,  T,)  + . . . .  

= - + + [4U a (Xo) + 0 + r )q 
The condition for existence of a real solution at any time has the form 4HsG(X 0) 

-i, (IX0 I < ~) and determine (under the condition of uniqueness of the extremum of the func- 
tion G at the point X 0 = X c) the threshold amplitude of the deformation H 5 = H c such that 

4HcG c =-i, G c = G(Xc). If AH = H 5 - H c + 0, X 0 § Xc, T x + 0, Gc" = G"(X c) then the solu- 

tion approaches the solution with a continuable singularity 

2H5C 5 = - -  t + - - - f f~  + 2H~Gr ( X  o - -  X~) 2 + 2T~ 1/2 

As the deformation amplitude tends asymptotically to the threshold value, the singu- 
larity in (3.2) can restore the lost interaction [3, 4] and nonstationarity [5-7] effects 
that will act in a small time interval. From generality considerations we require that 
these factors determine the fluid motion in equal degree. Then setting 

X o = X~ + a-4/52[~ ] GdG~ ' 111~' X~, 

Ho = (~H6o -- C/~2H~o~2H6, 

C - -  - -  (2c2H6o) - I  + ~ -  '52-d2~H~olC6 (X6, T6) + . . . .  

H6o = - -  (4Gc) -1 83/2, '~6 = 23/4"~3'~1/2~--5/2' 

and performing the passage to the limit o + += in (3.1) (the dashed line in Fig. 3), we 

arrive at the problem 
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=+~ xf o~co (,_, re) d, oc~ (~, r~) d~ ( 3 . 3 )  
C 6 - -  X~ - -  T~ - -  H 6  j 082 (s  - -  X6)1/2 ~ OT 6 (X6--8)1/4' 

x 6 - ~  

C s = (X6 2 + T6 2 + H6) ~/2 + . . .  (T 6 + - ~ ,  X~ § •  The r e l a t i o n s h i p  b e t w e e n  t h e  n o n s t a -  
t i o n a r i t y  and i n t e r a c t i o n  e f f e c t s  i s  r e g u l a t e d  by  t h e  p a r a m e t e r  7 s -  

The p r o b l e m  ( 3 . 3 )  a g r e e s  e x a c t l y  w i t h  t h e  p r o b l e m  o f  i n t e r a c t i o n  a t  t h e  l e a d i n g  edge  
of a thin profile for which the angle of attack changes with time according to a parabolic 
law by reaching the maximal value at the time T 6 = 0 [5-7]. The problem requires numeri- 
cal solution which is made complicated by the limit case of subcritical angles of attack 
H 6 ~ i, where the solution can be represented in the form 

(L 0) = H~ '/2 (X6, Te) = 0 (0 ,  
-91s  - C6 = Iir~l/2Dl (~, n) -{- 1t6 D~ (~, ~]) +- . . . .  D 1 = (Jr -{- ~ -l- n2) 1/2, 

?6~ f de 
D 2  = - -  2 (1 + ~ + n2) ~/2 - |  (t  + s ~ + n~) ~/~ (g - -  0 ~/~" 

Let us note that in the principal approximation the solution is symmetric in time 
with respect to the time q = 0. However, a linear correction to the friction turns out 
to be antisymmetric and, what is essential, negative for D > 0. Thus follows the existence 
of weak hysteresis in the solution for subcritical values of the profile angle of attack. 
Moreover, the sign of the function D 2 indicates that the stage of diminution of the angle 
of attack turns out to be more sensitive to separation. 

The author is grateful to V. V. Sychev and A. I. Ruban for attention to the research 
and discussion of the results. 
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